Уравнения Навье-Стокса - это система дифференциальных уравнений в частных производных, описывающих движение вязкой ньютоновской жидкости. Они используются в математическом моделировании многих прикладных задач физики. В частности, считается, что они описывают многие типы турбулентных потоков в динамике газа и жидкости.
Задача, которую решал Отелбаев, состоит в следующем: необходимо предъявить условия, при которых у системы уравнений Навье-Стокса есть достаточно хорошие (в математическом смысле) решения, причем для каждого начального набора параметров такое решение единственно. В некоторых частных случаях для разного рода упрощенных систем Навье-Стокса такие условия были найдены, но в работе над общим уравнением они не помогали. Это, среди прочего, помогло задаче завоевать звание одной из сложнейших в математике.
В работе Отелбаева говорится, что ему удалось найти условия на существование так называемых «сильных» решений. Главное достоинство работы в том, что она, с одной стороны описывает очень хорошие (с математической точки зрения) решения, с другой - утверждает, что такие решения имеются в наличии в должном для дальнейшей работы количестве.
Прежде чем решение Отелбаева будет признано верным, ему предстоит пройти проверку со стороны научного сообщества. Кроме этого не ясно, насколько работу Отелбаева можно считать решением задачи, связанной с уравнением Навье-Стокса.
Вопрос существования и единственности решений - одна из семи так называемых задач тысячелетия, за решение каждой из которых математический институт Клэя предлагает награду в миллион долларов (одна из задач - доказательство гипотезы Пуанкаре - была решена Григорием Перельманом, но он отказался от награды).
Мухтарбай Отелбаев является доктором физико-математических наук, директором Евразийского математического института Гумилева и заместителем директора филиала МГУ имени Ломоносова в Казахстане. Задачами, связанными с уравнениями Навье-Стокса Отелбаев интересуется достаточно давно.